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ABSTRACT. Here, we show that given any two finite strings of base b digits,
say s1 and s2, there are infinitely many Fibonacci numbers Fn such that the base

b representation of Fn starts with s1 and the base b representation of φ(Fn) starts

with s2.

Communicated by Oto Strauch

1. Introduction

Let b ≥ 2 be and integer. Let s1 = c1 · · · ck(b) be a positive integer s1 written in
base b. Washington [4] proved that there exist infinitely many Fibonacci numbers
Fn whose base b representation starts with s1. In fact, the first digits of the
Fibonacci sequence obey Benford’s law in that the proportion of the positive
integers n such that Fn starts with s1 is precisely log((s1 + 1)/s1)/ log b. Here,
we take this one step further. Let φ(m) be the Euler function of the positive
integer m. We put s2 = d1 . . . d`(b) for some other positive integer written in
base b and prove the following theorem.

Theorem. Given positive integers s1 = c1 · · · ck(b) and s2 = d1 . . . d`(b) written
in base b, there exist infinitely many positive integers n such that the base b
representation of Fn starts with the digits of s1 and the base b representation of
φ(Fn) starts with the digits of s2.

We use the fact that with (α, β) = ((1+
√

5)/2, (1−
√

5)/2) the Binet formula

Fn =
αn − βn

α− β
holds for all n ≥ 0.

For a positive real number x we write log x for the natural logarithm of x,
and bxc, respectively, {x}, for the integer part, respectively, fractional part of x.
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2. The proof

By replacing s1 with s1b
m for some positive integer m, if needed, whose effect

is adding m zeros at the end of the base b representation of s1, we may assume
that s1 > s2. By replacing s1, s2 by s1b

m, respectively, s2b
m for an arbitrary

positive integer m, we may assume that the length of the base b representation of
s1, that is k, is as large as we wish. In Section 4 of [2], it is shown that φ(Fn)/Fn

is dense in [0, 1]. So, we take ε ∈ (0, 1/(15b2k)) and choose a positive integer a
such that

φ(Fa)

Fa
∈
(
s2
s1

+ ε,
s2
s1

+ 2ε

)
. (1)

Now we take any prime p > Fa and look at Fap. Since p > Fa, it follows that

Fap = Fa

(
Fap

Fa

)
,

and the two factors Fa and Fap/Fa on the right above are coprime (indeed, the
only common prime factor of these two numbers could be p, which is not the case
since p > Fa). Any prime factor q of Fap/Fa is a primitive prime factor of Fdp

for some divisor d of a. Recall that a prime number q is said to be a primitive
prime factor of Fn if q divides Fn, but does not divide any Fm for 1 ≤ m < n.
One of the properties of primitive prime factors q of Fn when n > 5 is that
q ≡ ±1 (mod n). In particular, every prime factor q of Fap/Fa is congruent to
±1 (mod p).

Let q1, . . . , qt be all the prime factors of Fap/Fa. Then

(2p− 1)t ≤ q1 · · · qt ≤
Fap

Fa
≤ Fap ≤ αap.

Thus, t = O(p/ log p). Then

φ(Fap)

Fap
=

(
φ(Fa)

Fa

) t∏
i=1

(
1− 1

qi

)

=
φ(Fa)

Fa
exp

− t∑
i=1

1

qi
+O

∑
q≥q1

1

q2


=

φ(Fa)

Fa
exp

(
O

(
t

q1

))
=

φ(Fa)

Fa
exp

(
O

(
1

log p

))
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=
φ(Fa)

Fa

(
1 +O

(
1

log p

))
.

It implies that, if p > exp(κε−1), where κ > 0 is some absolute constant, then

φ(Fap)

Fap
∈
(
s2
s1

+ 0.5ε,
s2
s1

+ 1.5ε

)
. (2)

We now follow Washington’s argument [4] to prove that there exist infinitely
many primes p such that the base b representation of Fap starts with s1. For
this, it is enough to show that

Fap = s1b
N + ζap for some integer 0 ≤ ζap ≤ bN − 1. (3)

Note that since q1 ≥ 2p− 1, it follows that if p is sufficiently large (say, p > bk),
then Fap cannot equal s1b

N , and in particular, if in the above formula (3) we
have ζap ≥ 0, then in fact ζap ≥ 1. The above formula (3) yields

αap =
√

5s1b
N +
√

5ζap + βap =
√

5s1b
N (1 + xap) .

Since ζap ≥ 1, it follows that
√

5ζap + βap >
√

5− 1 > 1, and

0 < xap =

√
5ζap + βap

√
5s1bN

.

So, if xap ∈ (0, 1/bk), and p > bk is sufficiently large, it then follows that ζap <
bN , which is what we want. Thus,

ap logα = log(
√

5s1) +N log b+ log(1 + xap),

or

ap
logα

log b
−N −

⌊
log(
√

5s1)

log b

⌋
=

{
log(
√

5s1)

log b

}
+

log(1 + xap)

log b
. (4)

Observe that log(
√

5s1)/ log b is never an integer. Assume that k is sufficiently
large such that

1

bk log b
< 1−

{
log(
√

5s1)

log b

}
.

Then putting

δ =
log(1 + 1/bk)

log b
,

we see that a relation like (4) with xap ∈ (0, 1/bk) holds provided that{
p

(
a logα

log b

)}
∈

({
log(
√

5s1)

log b

}
,

{
log(
√

5s1)

log b

}
+ δ

)
. (5)
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The number γ = a logα/ log b is irrational. By a result of Vinogradov [3], the
sequence of fractional parts {pγ}p prime is uniformly distributed. In particular,
containment (5) holds for a positive proportion of primes p, and therefore cer-
tainly for infinitely many of them. So, indeed relation (3) holds. Relation (2)
now shows that

φ(Fap) = s2b
N + θ,

where

θ ∈
(
ζap

(
s2
s1

+ 0.5ε

)
+ 0.5εbN , ζap

(
s2
s1

+ 1.5ε

)
+ 1.5εs1b

N

)
.

Since ε < 1/(15b2k), the above upper bound is

ζap

(
s2
s1

+ 1.5ε

)
+ 1.5εs1b

N < (bN − 1)

(
bk − 1

bk
+

0.1

bk

)
+

0.1(bk − 1)

b2k
bN

< bN − 1,

where the last inequality above is implied by

1

9
<
bN − 1

bN
,

which holds true for all b ≥ 2 and N ≥ 1. This completes the proof of the
theorem.

3. Comments

It was shown in [1] that with σ(m) being the sum of divisors of the positive
integer m, the ratio σ(Fn)/Fn is dense in [1,∞). The present method now shows
that there are infinitely many positive integers n such that the base b represen-
tation of Fn starts with the digits of s1 and the base b representation of σ(Fn)
starts with the digits of s2. Also, one may replace the Fibonacci sequence Fn in
the above statements with some other sequence un for which it has been proved
that φ(un)/un and un/σ(un), respectively, are dense in [0, 1]. For example, one
can take un = 2n − 1 (see [1]) and the main result of this paper still holds
provided that b is not a power of 2. We give no further details.
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